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ABSTRACT

A wystes of parallel processes 1s satd to be
synchtunous Lf all processes run using the sanse
clock, and 1t Is asynchronvus {f cach process haw
ita own independent clock. For any s, n, a pat-
ticular distributed prubles ia defincd favolving
system behavior at n “ports”. 1nis prebles can be
solved in time s by a synchronuus systes but Te-
quites tlme at least {a-1) lug n on uny asynchro-
nous system, =

INTRODUCTION

A systes of parallel processes is said to be
syuchrotous 1f all processes run using the same
clock, so the processes uvperate in lock-step, and
1t is asynchronous if vach process bas {ts own in=
dependent cluck. Edamples of syn.hifonvus systess
are large centralized multiprocessiong computers
and VLSI chips containiug many scparate patallel
processing elements. Exanples of aays. hronous sys=
tems are distributed cumputer nviworks and 170
systems fur conventlonal cemputors.

in this paper, we compare time etticiency of
a pimple wodel of a synchiuncus svates victh a
simiiar dsynchfunous medel. We bound the nusber
of processes that can aceess any particular com
sunicatfon chaunel, and thet restriction is crucial
to our results, Far s, o « K, ve deline a partic
ular distributed probles fuvolving n “purts”. [t
can be sulved in tilke 8 on & synchiuneus System
but we show If requires time at least ia-1) ilosbnj

on any asynchronous system, Here b i{s a congtant

‘Thts material 13 based upon Fesecarch suppofted
by the Office of Naval lesearch unde- Contracts
REOO14=-80-C~0221 and RMi1&=79-C-087'. and by
the U.S. Army Kejgealih Office Contract NHusber
DAAG29-79-C-0155, also NSE #MCS77-1%678 aud
MUST924370.
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reflecting the ication bound in the model,
whuse precise definition is given in the next
section. Tf we strengthen the communication sys-
ter slightly to permit a single designated process
to broadcast to sll the others, or if we provide
each prucess with access to a global clock, then
the asynchronous model can solve the probles in
time Ofs).

THE MODELS

We use & versicn of the nodel of 3 concurrent
system defined in [LF79,.L¥81]. DBriefly, it con-
sizte of collections P of processes ané X of
shared varisbles. The globa! starz of the aystem
consists of the internal state of each process ro-
gether with the velue of each shared varisble. A
step is au atomic sction which consiscs of simul~
taneous changes to the state of sole process and

hie value of sume shared variable, Formally, s
step O 1s a pair of triples ({s.p,t).{u,x,v})
where &, ¢ ate possible internal states of process
p, and u, v are posaible values of varfsble x. We
define process{g) = p and veriableis) = x and say
2 invelves p and accesses X. Step O 1s applicable
to any global state in which process p has inter-
63l state s ond variable x coutsains value u. The
effect of perfurming o is to changu tre state of
p to t and simultancously to change the value of
X to v.

A system is specified by describing P, °, an
tuttial global state, and & set OKSTEES of rossi-
tle steps. A process p blocks in & global state
g if thera {s uc step O in OKSTEPS applicasle to g
with process{c) = p. In this paper, we ¥ quire
Sut systeas 1o be non~blockiang for all pracesses
and all global statca.

Lot x ¢ X and define locality(xj =
{process(o) : 0 ¢ OKSTEPS and variable{o) = x}. &
syates is b-ltounded if jlocality(x)! £ b for every
x ¢ X.

A computation of a systew 1s & finite or in-
finite sequence of steps In CESTEPS such that the
firsc step is applicable to the initial global
state, and esch succesding step is spplicable to
the state resulting fvom the spplication of ihe
pravigus step. The resule of 3 finite computation
is the global state sfter applying the sequence.
An Infinite computation is admissible 1f every
process appesrs in inflattely many steps of the
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sequence.

A round i3 any sequence of steps such that
eVEry proceus appears at least once in the se-
quence. A minimal round 3 & round such that no
proper prefix ts o round. Every sequence of steps
Can be uniquely partitioned inte scgsents such
thet every sepment §s a tound, except possibly for
the last 1f the cequence i3 finite, and cvery
round §s mintmal., We call this a partition into
minfoal rounds, even though the last scgeent is
4ot hecedssarily a round.

A »equence of steps 1a syncheenous 1f in the
unique psrtition into minimal rounds:

(1) No tus steps in the same round iavolve the
same process;

(2} %o twu steps in the sase round dccess the
sdame variable,

(1} aud (2) together imply that the steps In each
r-and are independent and can be performed in auny
ofder, Or simuiiancvously, with the same result,

The tun time for & finite sequence of steps
is defined to be the number of scpgments in the
partition into minimal rounds. (This definition
is equivalent to the one in [LFBL} whlch says it
is the lungest amount of clapscd real time that
the system could take to execute the scguence,
subject Lo the constraint thai the tise Jdelay
betveen tWo steps of the same process is at most
unity. For synchronous systems, this definition
12 also equivalent to the more ususl oue which
sioply counts the nusber of synchronvus steps of
the systes, where one synchroncus ateg conaiats of
the aimultancous executlion of & step Yy each pro-
cenn. )

Finally, & synchronous system is & Coacurreat
system vhose allowable computations are all of 1ts
tafinite synchronous computativas. An asynchrenvus
systea {3 & concurrent system whose «}lowable com-
putations are all of its infinitc 3dcissible conm
putations.

THE PROBLEM

e now define & particular behavior for a
concurfent system. Let Y < X be a distingulshed
sct of varlables called purts. A psrt eveat is
any step that accesses & port. A scasion is any
sequence of steps countaining at least une porft
event for every port. A cosputaticn pericims 3
scastons Lf it can be partitivned Ints s segments,
each of vhich is & session. An infisite conpu-
tation {3 ultimately gulescent if it coutains
unly & fiunlte number of poart events. The tizs 1o
quicscence of an ultinately guiescent scquence is
the run time of the shortest prefix contalaing &1l
port cvents.

Let %, 0 ¢ K. The (»,n)-sessis: pgrublem (s
the provles of {inding & conrurrent sysiem with n
ports such that every allovable ceaputatissm per-
forns (at least) 3 sessions and is ultimatgly
quiescent.

Kote that the (s,n)}-session srobles. like
the sutual excission and dining philosophers

problems, concerns possible orderings of sequences
of events rather than the computation of parcic-
ulsr outputs. It is an abutraction of tie ayn-
chronization needed in many natural problems.
Consider, for example, a simple message distribu-
vion system in which 8 sending process urites a
sequence of 8 messages one at & time on 8 buard
visible to all and waits after each message until
#ll n other processes have resd the message.
Whatever protocol insures that the sender has
vaited sufficiently long will also solve the
{s,n)-session problem.

HAIN RESULT

We show that sny asynchronous b-bounded sys-
tem solving the (s,n)-session prodlem Tequires
tise at least (s-1) liog,n] to quiescence, whereas

there is a trivial synchronous system which solves
the problem in time exactly s. This is the first
exanple we know of, of 8 problem for which sn
asyachronous system is provably slover than a
synchronous ore, and it shows that & straight-
forvard step-by-step and pr by=-p simu~
lation of an n-process synchronous system by an
n=pr asynchr ons sarily loses &
factor of logbn in speed.

The result is even wore surprisisg vhen one
resiizes that the trivial asyachronous systes
with one process par port (snd no commnication
smong the processes) in which sach process does
nothing except access a port on sach step in fact
perforns s sessions vithin time s. The difficul-
ty is that no process knous when time s has
clapsed (due to the lack of a global system
“clock™), nor does {t know when the s ssssions
have in fact been achieved, 30 none of the
processes knows vhen 1o $t93 sccessing its poxt.

A procedure which does work iz for & process
sssociated vith each port to perfors s port
event, broadcast that fact and then wait uatil
ft has heard that all other port processss have
performed thair port eveats snd that the sessiom
has been cospleted. This i3 repeated s times.
By making the port processes the lesves of a
tTes network, the necessary communicsrion for oane
session can be accomplished in time G{log n);
hence, the totel time to quiescence for the
dolution 1s Oés log n). It scems very in-
efficient to wait after cach port event, and one
aight try to fnvent cléver schames t6 Increase
the concurremcy ia the system. Our lower bound
shows, howgves, that this sethod is optimel to
within & constant factor, s0 only & limited
smount of faprovesent is poesible.

Ue now present the formal results,

Theoten 1. For all s, e N, thets 2 &
1-tounded syachronous system vhich solves the
{s,8)-session problem, such that the tims to
guiescence for each sllovable computstion is s.

Proof. The system has n procisses, ome
corresponding to esch part. Each process
accesses 1ta port on each of its first & stepe
and then ceases perforning pert svests, In
evety infinite synchronous computatiom, seck of
the {irst 3 minimal rounds comstitutes & scisiom,
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and the systes becomes Quiescent after s rounds.
Henoe, the system solves the (s,n)~sesslon problem

in tioe s, .
£

Iheoten 2 {Haln Result). Adsume b, 3, ne K,
b & 2. Fur every L-bounded asyuclironous systes
which solves the (s,n)-sesslon problem, thc time

to Guiescence is @t least (8-1) llugbn} fuor some

allowable computation,

Tue proof of Theorew 2 involves a scries of
thece leamas abuut & particular partisl ordering
of steps of a cumputation. (The ordering repre-
sents o kind of logical dependency.) We break up
the proof of Theurem 2 by presenting the lemmas
before the main pruof, These lemeas and thelr
provis are self-conteined und Jdepend oily vn the
propestics plven below. For bettet fntuttive mo-
tivatton, however, the reader may wish 1o resd the
waln pruct befure reading the lenmas.

Let R be the wet {1,...,8} (of "round"
ausbers), P & finlte sct (of “processes™), X a
set {0 "varfables™). lLet D be u set having
mapplogs found ; D~ R, proc : D <+ P aud
var 1 0+ XK. Assumc that for every patlr
{r,p} ¢« R = P, there {» cxactly one ¢ ¢ D having
tound{3) = ¢ and proc(v) = p.  Let locix) =
{proc{o) : 0 € 0 and var(o) » x}. let b 2 2 and
assuse loc{x)i s b for a1l x ¢ X.

Let = be a partial order on D, and writas
Q :lt T to indicate that ¢ < T and there §3 00 p

with ¢ < 5 < 1. Assume that = has the following
prupertics:

(1) 1f 9 3 T, thes efthor var{3) « var{1)} or
1 proc{o) = proc(r).

{11) If elther var{3) = var(t) or proc(d) =
proc{t), then 0 and 1 arc s-compareble.

(111) 1f 3 £ 1, then round(d) £ reund(z).
Finally, let deplg) = {var{t) : o s 1},

Leams 1 {(Monotomicity). 1If g, s 9, then
égp(ﬁl}.

£

depo,)

Proof. Obvious from the definition of dep.

i
u

lesma 2. let 0 ¢ D, round{u) = r,
var{o) = x. let C* {T €D : round(1} =
r + 1 and proc{T) ¢« loc{x)}.

Then deplcy = U dep(t) 4 (x}.
1<C

Proof. PFroof 1s by induction on s, beginning
with =sxizal elcnents. Lot 9 ¢ D and sssume the
leaza Bholds for all T > 0. Assume 7, x and T are
defined 1ok © a3 in the statownl of the lemma.
If there exists O' « D with var{o') = x 4nd 3°* > 3,
then fix o' a3 the smallest such mesber of D,
{Froperty (i1} insutes that o', tf fx cxists, is
duefined uniquely.) Similarly, {f there oxlits
3" « B with proc{a™) = proc{u) and =7 - 2, then

fix 0" as the smallest such member of D, Define
8* = dep{o?') 1f 0° exists, ¢ othervise, and

8" » dep(a”) {f o" exists, § othervise. Then
propertics (1) and (11) and monotonicity show
that dep(o) € B* v B" o {x}. 1t wuffices to show

that B' v 8" € |} dep(1) ¢ {x}.
Tel

We first consider B°, and sssume 0' exists,
(1f o' does not exist, there is nothing to prove.)

By induction, B' & U dep(1) u {x}, vhere
Tel’
C' @ {1 ¢ D & round(t) = round(c') + 1 and
proc(t) ¢ loc(x)}. For cvery t' ¢ C*, there
exists T € C with proc{t) = proc{r'). Property
(11) shows that T and T' are sS—comparable;
property (111) shows that T S T'. MNonatonicity
tmplics that dep(1') © dep{(1). Thus,

B' < UJ dep(1) v {x}, as needed.
T¢C

¥inally, wve coasider 3", au' assuse O"
exists. Then the properties of U and S show
that vound(g®) = ¥ + 1, o that 0" ¢ C,

Thus, 8" ¢ || dep(1), ss needed.
teC 0

Lemaa 3. For sach 0 € D, it is the case
that
t—round{ﬁ}ﬂ_l

. b
jdep(a)i 1 .

Proof. We proceed by induction oa
k = Tound(0). starting vith k » & and vorking
backvazds.

BASIS: Kk = a.. By Lemma 2, dep{0) < {var(o)},
w0 ldep(a)] € 1, as needed.

IRDUCTIGN: 1 5 k < a. By Lesma 2, we have

Hdeplo)! = § ldep(1)i + 1, vhere € 1s defined as
1¢C

in Lemma 2. Each T ¢ € has round(7) = k + 1,

vk
so by induction, ldep{r)}]! s = Also,
1€l 3 b. Hence, idep(®)] $

. b"“-lﬂ}-rl-gf_':’_);-_l_.“mdd.
Lh-lg -1

o

Proof of Theorem 1. Assule sn ssyachronous
systea which solves the (s5.,2)-session problem.
Enumerate the processeés arbitrarily. Coastruct
an infinite adniasible computatiom & by running
the processes in round-robin order (oms step of
process 1, one of process 2,..., one step of
process q, one step of process 1,...). Each
round-robin round is ninimal and contaims exactly
ane stap of esch process; hance, the time to




pertorn the first r rounds Is exactly r.  Because
we assume & corfe? solutlon, this computation is
ultimately qulescent, Let t be the tise to qui-
escence fur this computation. Then rousd ¢t 15 the
last round 2t which any port event oocurs. ¥He wish
to show t & (>~1) I!ugbu:.

Let a = 8y, whete 8 contatns the tirst ¢
rounds of G, and ¥ 13 the remaining tail. Our
strategy iw to construct & new infinite sdmissidle
computation @' @ ¥’y , wvhere 8' s a reordering of
the steps of ¢ that results $n the same globel
state as B, but 8’ perfurms 4t mont tg’éiughni +1

scsions. Since no purt events occur in y, it
fuollows that @' performs at most :f!!cgbag + 1

ascsslons., Stuce u’ s an infinite adzissible come
putation for the aystem, t/glu;bn; t 1 23 and our

fesult folluws,

To construct 3%, we first construct & partial
order of the steps in 8, repr ting “Jdevendency™.
{Fuormally, the domain of the partiul order consiets
of ordered pairs (l.{l). where £1 13 the 1t% step
of 8.) For every pair of steps o, 1 in =, we et

] g T 1f O precedes T in £ and eithcr process{c) =

process(1) or variable(d) = varfable(r). Cloze s

Lao

under transitivity. g is & partial order, and

every total order of the steps of 2 consisient
with é is A computation which leaves the systes In

the sune global state as 8. (Clearly 2 ltself
defines such a total ordering.)

Now, let w = ftlLXogbn_ﬂ , and write
8= 81-..8‘. where 3‘ consiste of %lagbu; sininal
rounds, 1 s k < =, Let Yo be an arblitrery port.
For k = 1,...,m. we define tnductively & port y,
and two sequences of steps Gk and L follows.
There are two cases. First, 1f there is some port
which s not accessed by any step of ak. then take
Yy tu be that port and let %k = % {the null
»cquence) and W " Bt Otherwise, let I, be the
first atep In £, which sccesses y, _,. Ve nov wish

x
¥

to apply Lesma 3, to the uubordering of g defined
by restriction to rounds with nuzbers

(;-1)llosbng+l..‘.. k!iogbnj inclusive. The

mapping “rounds” required for the lesmas {s ob-
tafued by renumbering the rounds in the saze order.
Happings “proc” anu "var" are obtained from the
sappings “process” and “varisble” respectively.

1t is straightforvard to sce that the neccasary
properties of D and S are satisfied. Then by
Lessd 3, we see Lthat idep(tk)l <

g}lagb"5'l+l =1 s a~ 1. Since therc are n ports,
b-1

this mesns that there must exist a port Y

and a step T such that

{1) o, is the last step in 8& which accesses

{11} it &s false that Tk 3 AR
Thus, adding the relation °k g T to g and

closing under transitivity results in another
partial order : . Chouse sny total ordering of
the steps in 3& consistent with : . Lat Qk be

the longest prefix of that ordering not contain~
iag any step accessing Y1’ and let vk be the

remainder. This i{s fllustrated in Figure 1.

In sither case, ’k does not contsin any
step which sccesses ’t-l and *k does not contain
say step vhich acceSses Y

Let B' = 0,¥,8,%,...9. ¥, . 8' {3 consistent
with g , but B° contafns at most ® S tlllogbnj +1
sessions, since esch sessiom must contain steps
on both sides of some § -v, boundary. (If »
sequence of steps were completely contatned in

- &

no Nccesscs LO YL,

%k 1*&' for example, thea it would fafl

to contain & step accessing pOrt ’k-x')
0

1

:-*— ‘i o

i

1

s H
QurnBmmnOrmalmn. . s enGraaOetmOen. . = =lmtmGemaen. o . o—~0-—0==0~==0
=

3

T

Figure 1. A total urdering of steps In 8, consistent with : .
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RESULTS Fuk MORE GENEKAL MODELS

1f the model 1y generalfzed by removing the
bound on the number of processes which cun access
4 shured variable, then a single cosmunication
variable shared by n port processes can be used to
construct an easy 0(s) solution.

In fact, {f the original model s only gen-
eralizcd slighcly by slloving one of the shared
varisbles to be resed by an arbitracy nusber of
procesues (but only to be chinged by one process),
then an O(s + log n) solution is possible. In
aore detatl, we use & shared variable, the Bessage
board, which every process can read but oaly snc
fixed process, the supervisor, can change. Each
port has & correaponding port process, and there
are additlvnal communication processes whuse job
1t 13 to pass messages through a true network from
the port procesdes back to the supervisor. The
Bessage buard contatns an {nteger vhifch we call
& "clock™ value. The supervisor alternately in-
Crements the clock and reads the messages being
sent back. Esch port process repeatedly perforas
a cycle of reading the clock, perfuralng a port
event, and sending a4 messsge back to the super-
visor, thrtough the network, which coutains the
clock value just read and the port tdentiffer.

1t cl and €, are two successive clock values

sent by port process i, then a port eveut sust
occur at port § sometime sfter the clock assumes
value € and before the clock assumes valae

c, + 1. By naturally combining this fuformation

about all ports, the supervisor cau coastruct a
sequence O = bo < bl < bz € eve < b. such that for

each §. & session is guaranteed to occur between
the times vhen the clock first assumes values b3
and "51-1' (Specifically, let €y)¢Sgaecee denote
denote the ive clock values sent by port
process 1, 1 S 1 S n, Then define

by« sax (‘x(k+x) +1:1313nandkiasche

saallest ladex such that ¢, 2 b,_x). for esch i,

1 53 $s.) After the supervisor constructs this
engire 1 v i Kk that at least s sesifons
have in fact occurred, at which time It puts &
"STOP" message On iis Scssage board. shen the
poOTt processcs read the "STOP” message, they stop
performing port events.

It 13 casy to see that this construction
solves the (s.,n)-sessicn problem. Ve argue that
it satisfies the required O{s + log n) time
bound.

First, we consfder message transuission time.
Since vr are not assuming any upper buund on size
of variables, the tree nctwurk can guarantee (by
concatenating sessages) that any :essage csn be
sent &3 300N 83 & process Is realdy to send i,
and also that any message sent by time t s
received Ly the supervisur by tise t + O{log n).

Next, we claim that for esch §, 1 5 ] 3 s,
the slapicd tine batwveen uhen the clock first

assuses values bj-l and I'aj 42 bounded sbove by &
constant. For, from the time wvhen the clock
first sssumes value bj-l' it is at sost & fized
constant amount of time before all port processes
have read the clock, perforsed port events, sent

ncivages containing clock values z g 1 and

read the clock once again. Therssfter, it is at
808t one time unit before the clock is fucre-
nented again, thereby assuming valus 53.

Thus, the totsl elapsed time until the
clock sssumes value b. is O(s). Thereafter,

within time O(log n), the supervisor has received
all the needed messages and can deduce that s
sessions have occurved and display cthe "STOP”
mcasage, Three time units latsr, sll port
processes will have read the "STOP" message and
will have stopped perfcrming porct svents.
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